Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or goes beyond human cognitive capabilities throughout a vast array of cognitive tasks. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly goes beyond human cognitive abilities. AGI is considered among the meanings of strong AI.
Creating AGI is a main goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 study recognized 72 active AGI research study and advancement tasks across 37 nations. [4]
The timeline for attaining AGI remains a topic of continuous debate amongst researchers and specialists. Since 2023, some argue that it might be possible in years or decades; others preserve it may take a century or longer; a minority think it might never ever be attained; and another minority claims that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually revealed issues about the quick development towards AGI, recommending it could be attained faster than lots of anticipate. [7]
There is debate on the exact meaning of AGI and concerning whether modern large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have actually stated that mitigating the risk of human extinction postured by AGI needs to be a worldwide top priority. [14] [15] Others discover the advancement of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or basic intelligent action. [21]
Some scholastic sources schedule the term "strong AI" for computer system programs that experience life or awareness. [a] On the other hand, weak AI (or narrow AI) has the ability to resolve one particular issue however does not have general cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as humans. [a]
Related principles include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is far more typically intelligent than people, [23] while the idea of transformative AI connects to AI having a large effect on society, for example, similar to the farming or industrial revolution. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, qualified, expert, virtuoso, and superhuman. For example, a skilled AGI is specified as an AI that surpasses 50% of skilled grownups in a large range of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is likewise defined but with a threshold of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. One of the leading propositions is the Turing test. However, there are other widely known definitions, and some researchers disagree with the more popular approaches. [b]
Intelligence qualities
Researchers normally hold that intelligence is needed to do all of the following: [27]
factor, use technique, fix puzzles, and make judgments under uncertainty
represent understanding, including sound judgment understanding
strategy
discover
- communicate in natural language
- if essential, integrate these skills in conclusion of any given objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) think about extra characteristics such as creativity (the ability to form novel psychological images and principles) [28] and autonomy. [29]
Computer-based systems that display many of these capabilities exist (e.g. see computational creativity, automated reasoning, decision support system, robot, evolutionary calculation, smart representative). There is dispute about whether contemporary AI systems have them to a sufficient degree.
Physical traits
Other abilities are thought about desirable in smart systems, as they may impact intelligence or help in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, etc), and - the ability to act (e.g. move and control objects, modification location to explore, etc).
This includes the ability to detect and react to risk. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and manipulate things, modification area to explore, and so on) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language designs (LLMs) might already be or end up being AGI. Even from a less positive point of view on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, offered it can process input (language) from the external world in location of human senses. This analysis aligns with the understanding that AGI has never been proscribed a specific physical personification and hence does not demand a capability for mobility or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests indicated to confirm human-level AGI have been thought about, including: [33] [34]
The concept of the test is that the device has to attempt and pretend to be a man, by addressing questions put to it, and it will just pass if the pretence is fairly persuading. A significant part of a jury, who should not be professional about makers, should be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would need to carry out AGI, since the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of problems that have actually been conjectured to need general intelligence to solve along with people. Examples consist of computer system vision, natural language understanding, and dealing with unanticipated scenarios while solving any real-world problem. [48] Even a particular job like translation needs a machine to read and write in both languages, follow the author's argument (reason), comprehend the context (understanding), and consistently recreate the author's initial intent (social intelligence). All of these problems require to be fixed simultaneously in order to reach human-level device efficiency.
However, a number of these jobs can now be carried out by modern big language models. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on many standards for reading understanding and visual thinking. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI researchers were convinced that synthetic basic intelligence was possible which it would exist in just a couple of decades. [51] AI leader Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might produce by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the project of making HAL 9000 as practical as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the problem of producing 'expert system' will significantly be solved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being obvious that scientists had actually grossly ignored the trouble of the job. Funding companies ended up being skeptical of AGI and put researchers under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "carry on a casual discussion". [58] In response to this and the success of specialist systems, both industry and government pumped cash into the field. [56] [59] However, self-confidence in AI amazingly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never fulfilled. [60] For the 2nd time in 20 years, AI scientists who predicted the imminent accomplishment of AGI had been mistaken. By the 1990s, AI scientists had a reputation for making vain pledges. They became reluctant to make forecasts at all [d] and prevented mention of "human level" artificial intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained industrial success and academic respectability by concentrating on particular sub-problems where AI can produce verifiable results and industrial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used extensively throughout the technology industry, and research study in this vein is greatly moneyed in both academic community and market. As of 2018 [update], development in this field was considered an emerging pattern, and a mature phase was expected to be reached in more than ten years. [64]
At the millenium, lots of traditional AI researchers [65] hoped that strong AI could be established by combining programs that fix various sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up route to synthetic intelligence will one day meet the conventional top-down route majority method, all set to supply the real-world competence and the commonsense understanding that has actually been so frustratingly elusive in reasoning programs. Fully smart machines will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is really only one viable path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we ought to even try to reach such a level, since it looks as if arriving would simply amount to uprooting our symbols from their intrinsic meanings (thus merely reducing ourselves to the practical equivalent of a programmable computer). [66]
Modern artificial basic intelligence research study
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the ability to satisfy objectives in a wide variety of environments". [68] This type of AGI, defined by the capability to increase a mathematical definition of intelligence rather than show human-like behaviour, [69] was also called universal synthetic intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a variety of visitor speakers.
As of 2023 [update], a small number of computer system researchers are active in AGI research study, and many add to a series of AGI conferences. However, progressively more researchers have an interest in open-ended knowing, [76] [77] which is the idea of enabling AI to constantly discover and innovate like people do.
Feasibility
Since 2023, the development and possible accomplishment of AGI stays a subject of extreme dispute within the AI community. While conventional agreement held that AGI was a remote objective, recent advancements have led some researchers and industry figures to claim that early kinds of AGI may already exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This prediction failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century since it would require "unforeseeable and essentially unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level expert system is as large as the gulf between present space flight and practical faster-than-light spaceflight. [80]
A further obstacle is the absence of clearness in defining what intelligence involves. Does it need awareness? Must it show the ability to set goals along with pursue them? Is it simply a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding required? Does intelligence require explicitly duplicating the brain and its specific professors? Does it need emotions? [81]
Most AI scientists believe strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, but that today level of progress is such that a date can not precisely be anticipated. [84] AI specialists' views on the feasibility of AGI wax and subside. Four polls conducted in 2012 and 2013 suggested that the typical estimate among experts for when they would be 50% confident AGI would show up was 2040 to 2050, depending on the survey, with the mean being 2081. Of the specialists, 16.5% answered with "never ever" when asked the exact same concern but with a 90% confidence instead. [85] [86] Further present AGI development factors to consider can be discovered above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong bias towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 forecasts made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers released a comprehensive examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could fairly be seen as an early (yet still insufficient) variation of an artificial basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of general intelligence has actually already been accomplished with frontier designs. They composed that reluctance to this view comes from 4 main reasons: a "healthy hesitation about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "devotion to human (or biological) exceptionalism", or a "concern about the economic ramifications of AGI". [91]
2023 likewise marked the development of large multimodal designs (big language models capable of processing or producing multiple methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of models that "invest more time believing before they react". According to Mira Murati, this ability to think before responding represents a brand-new, additional paradigm. It improves model outputs by spending more computing power when producing the response, whereas the design scaling paradigm enhances outputs by increasing the design size, training data and training calculate power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had actually accomplished AGI, mentioning, "In my opinion, we have currently achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than most people at most jobs." He likewise dealt with criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their knowing process to the scientific approach of observing, hypothesizing, and verifying. These statements have triggered dispute, as they rely on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs demonstrate remarkable versatility, they might not completely fulfill this standard. Notably, Kazemi's comments came soon after OpenAI got rid of "AGI" from the regards to its partnership with Microsoft, triggering speculation about the business's tactical intentions. [95]
Timescales
Progress in expert system has actually historically gone through periods of quick progress separated by durations when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to create area for more development. [82] [98] [99] For instance, the computer hardware offered in the twentieth century was not enough to carry out deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that quotes of the time needed before a truly flexible AGI is built differ from ten years to over a century. Since 2007 [upgrade], the consensus in the AGI research neighborhood seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI researchers have actually offered a wide variety of opinions on whether progress will be this quick. A 2012 meta-analysis of 95 such viewpoints discovered a predisposition towards predicting that the onset of AGI would happen within 16-26 years for modern and historical forecasts alike. That paper has actually been slammed for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the traditional method utilized a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the current deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly offered and easily available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old child in very first grade. An adult pertains to about 100 usually. Similar tests were carried out in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in performing lots of diverse jobs without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the exact same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to adhere to their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 different tasks. [110]
In 2023, Microsoft Research released a research study on an early version of OpenAI's GPT-4, competing that it displayed more basic intelligence than previous AI models and demonstrated human-level efficiency in tasks spanning several domains, such as mathematics, coding, and law. This research study triggered a debate on whether GPT-4 could be considered an early, incomplete version of artificial general intelligence, stressing the requirement for further expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The concept that this things could in fact get smarter than people - a couple of individuals thought that, [...] But the majority of people believed it was way off. And I thought it was way off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise stated that "The progress in the last couple of years has actually been pretty unbelievable", which he sees no reason that it would decrease, anticipating AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test at least in addition to people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI worker, approximated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is thought about the most appealing path to AGI, [116] [117] whole brain emulation can act as an alternative technique. With whole brain simulation, a brain model is developed by scanning and mapping a biological brain in detail, and then copying and simulating it on a computer system or another computational gadget. The simulation model must be sufficiently loyal to the original, so that it acts in practically the same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research functions. It has been gone over in synthetic intelligence research study [103] as a technique to strong AI. Neuroimaging technologies that could deliver the needed detailed understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of adequate quality will appear on a similar timescale to the computing power needed to emulate it.
Early estimates
For low-level brain simulation, a really effective cluster of computers or GPUs would be needed, provided the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by adulthood. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on a basic switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous quotes for the hardware needed to equal the human brain and adopted a figure of 1016 computations per 2nd (cps). [e] (For contrast, if a "calculation" was equivalent to one "floating-point operation" - a measure utilized to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was accomplished in 2022.) He utilized this figure to predict the necessary hardware would be readily available sometime between 2015 and 2025, if the exponential growth in computer power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has developed an especially detailed and publicly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic neuron model presumed by Kurzweil and used in lots of current synthetic neural network executions is basic compared with biological neurons. A brain simulation would likely have to record the in-depth cellular behaviour of biological neurons, currently comprehended only in broad outline. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would need computational powers numerous orders of magnitude larger than Kurzweil's estimate. In addition, the quotes do not represent glial cells, which are understood to play a function in cognitive processes. [125]
A basic criticism of the simulated brain technique originates from embodied cognition theory which asserts that human personification is a vital aspect of human intelligence and is essential to ground significance. [126] [127] If this theory is appropriate, any fully practical brain design will need to encompass more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, but it is unknown whether this would suffice.
Philosophical point of view
"Strong AI" as specified in approach
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between two hypotheses about expert system: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness". Weak AI hypothesis: An artificial intelligence system can (only) imitate it thinks and has a mind and consciousness.
The first one he called "strong" since it makes a stronger declaration: it assumes something special has occurred to the maker that surpasses those capabilities that we can test. The behaviour of a "weak AI" machine would be exactly identical to a "strong AI" machine, however the latter would also have subjective conscious experience. This usage is also typical in scholastic AI research study and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to indicate "human level artificial basic intelligence". [102] This is not the same as Searle's strong AI, unless it is presumed that awareness is required for human-level AGI. Academic theorists such as Searle do not believe that holds true, and to most artificial intelligence researchers the question is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it actually has mind - undoubtedly, there would be no chance to tell. For AI research study, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are 2 various things.
Consciousness
Consciousness can have different meanings, and some aspects play considerable functions in sci-fi and the ethics of artificial intelligence:
Sentience (or "phenomenal consciousness"): The capability to "feel" understandings or emotions subjectively, instead of the capability to factor about perceptions. Some philosophers, such as David Chalmers, use the term "consciousness" to refer specifically to phenomenal awareness, which is approximately equivalent to life. [132] Determining why and how subjective experience arises is known as the difficult issue of consciousness. [133] Thomas Nagel described in 1974 that it "feels like" something to be mindful. If we are not mindful, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had attained life, though this claim was extensively challenged by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a different person, specifically to be purposely knowledgeable about one's own thoughts. This is opposed to just being the "subject of one's thought"-an operating system or debugger has the ability to be "familiar with itself" (that is, to represent itself in the same method it represents everything else)-however this is not what individuals typically mean when they utilize the term "self-awareness". [g]
These traits have a moral dimension. AI life would generate issues of well-being and legal defense, likewise to animals. [136] Other aspects of consciousness related to cognitive abilities are also relevant to the idea of AI rights. [137] Finding out how to incorporate sophisticated AI with existing legal and social structures is an emergent concern. [138]
Benefits
AGI might have a wide range of applications. If oriented towards such goals, AGI might assist reduce different issues in the world such as appetite, poverty and health issues. [139]
AGI could enhance efficiency and performance in many jobs. For instance, in public health, AGI might accelerate medical research, notably versus cancer. [140] It might take care of the senior, [141] and equalize access to rapid, top quality medical diagnostics. It could provide fun, low-cost and individualized education. [141] The need to work to subsist could end up being outdated if the wealth produced is appropriately rearranged. [141] [142] This likewise raises the question of the place of human beings in a radically automated society.
AGI could also help to make reasonable choices, and to expect and prevent disasters. It could also assist to enjoy the advantages of potentially disastrous technologies such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's primary goal is to prevent existential disasters such as human termination (which could be hard if the Vulnerable World Hypothesis turns out to be true), [144] it could take measures to dramatically reduce the dangers [143] while minimizing the effect of these measures on our lifestyle.
Risks
Existential dangers
AGI might represent numerous kinds of existential threat, which are threats that threaten "the premature termination of Earth-originating smart life or the irreversible and extreme destruction of its capacity for desirable future advancement". [145] The threat of human extinction from AGI has actually been the subject of numerous arguments, but there is also the possibility that the advancement of AGI would lead to a completely flawed future. Notably, it might be used to spread out and protect the set of worths of whoever establishes it. If mankind still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, preventing moral development. [146] Furthermore, AGI might help with mass monitoring and indoctrination, which might be used to produce a stable repressive around the world totalitarian program. [147] [148] There is also a risk for the machines themselves. If machines that are sentient or otherwise worthy of moral factor to consider are mass created in the future, engaging in a civilizational path that indefinitely disregards their well-being and interests could be an existential catastrophe. [149] [150] Considering how much AGI might improve mankind's future and assistance minimize other existential dangers, Toby Ord calls these existential risks "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI poses an existential danger for human beings, which this risk needs more attention, is controversial but has actually been backed in 2023 by lots of public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, facing possible futures of enormous benefits and threats, the specialists are undoubtedly doing whatever possible to ensure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll get here in a couple of years,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is happening with AI. [153]
The prospective fate of humankind has often been compared to the fate of gorillas threatened by human activities. The comparison states that greater intelligence permitted humanity to control gorillas, which are now susceptible in ways that they might not have prepared for. As a result, the gorilla has actually ended up being an endangered types, not out of malice, but simply as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind which we must beware not to anthropomorphize them and analyze their intents as we would for human beings. He said that people will not be "smart adequate to develop super-intelligent devices, yet extremely foolish to the point of providing it moronic goals without any safeguards". [155] On the other side, the idea of crucial convergence recommends that almost whatever their goals, smart representatives will have reasons to try to endure and acquire more power as intermediary actions to achieving these objectives. Which this does not need having feelings. [156]
Many scholars who are concerned about existential risk advocate for more research into solving the "control issue" to answer the question: what kinds of safeguards, algorithms, or architectures can developers implement to maximise the possibility that their recursively-improving AI would continue to behave in a friendly, instead of damaging, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could lead to a race to the bottom of safety preventative measures in order to release products before competitors), [159] and making use of AI in weapon systems. [160]
The thesis that AI can present existential risk also has detractors. Skeptics generally say that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other issues associated with existing AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of people beyond the innovation industry, existing chatbots and LLMs are already perceived as though they were AGI, resulting in additional misconception and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an unreasonable belief in a supreme God. [163] Some researchers believe that the communication campaigns on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and researchers, provided a joint declaration asserting that "Mitigating the danger of extinction from AI need to be a global priority together with other societal-scale risks such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their jobs affected". [166] [167] They consider office workers to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a better autonomy, capability to make decisions, to interface with other computer tools, however likewise to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can wind up miserably poor if the machine-owners effectively lobby versus wealth redistribution. Up until now, the pattern appears to be toward the 2nd choice, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need governments to adopt a universal basic earnings. [168]
See also
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain AI effect AI safety - Research location on making AI safe and beneficial AI alignment - AI conformance to the desired goal A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of device knowing BRAIN Initiative - Collaborative public-private research study effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of synthetic intelligence to play different video games Generative expert system - AI system capable of producing material in action to prompts Human Brain Project - Scientific research study project Intelligence amplification - Use of infotech to augment human intelligence (IA). Machine ethics - Moral behaviours of manufactured makers. Moravec's paradox. Multi-task knowing - Solving multiple maker discovering jobs at the exact same time. Neural scaling law - Statistical law in machine learning. Outline of artificial intelligence - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or type of expert system. Transfer learning - Machine knowing technique. Loebner Prize - Annual AI competition. Hardware for synthetic intelligence - Hardware specifically created and optimized for synthetic intelligence. Weak expert system - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the post Chinese space. ^ AI creator John McCarthy writes: "we can not yet define in general what sort of computational procedures we wish to call intelligent. " [26] (For a conversation of some definitions of intelligence utilized by artificial intelligence researchers, see viewpoint of artificial intelligence.). ^ The Lighthill report specifically slammed AI's "grand objectives" and led the dismantling of AI research study in England. [55] In the U.S., DARPA ended up being determined to money just "mission-oriented direct research study, rather than basic undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a fantastic relief to the remainder of the workers in AI if the creators of brand-new general formalisms would express their hopes in a more secured type than has in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a basic AI book: "The assertion that machines might perhaps act intelligently (or, possibly much better, act as if they were intelligent) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are actually believing (as opposed to replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic basic intelligence benefits all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is developing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and warns of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can prevent the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The genuine threat is not AI itself however the way we deploy it. ^ "Impressed by artificial intelligence? Experts say AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might present existential threats to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that mankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of extinction from AI should be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts caution of danger of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing devices that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no factor to fear AI as an existential risk. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the full variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on everyone to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent characteristics is based on the subjects covered by significant AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine young boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of difficult tests both AI variations have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software application engineers prevented the term expert system for worry of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite development in maker intelligence, synthetic general intelligence is still a major obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not develop into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A survey of professional opinion. In Fundamental issues of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and asystechnik.com Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as clever as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone in between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 tells us there is a middle ground between narrow and basic AI. ^ Quach, Katyanna. "A designer developed an AI chatbot using GPT-3 that assisted a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing video games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could equal human intelligence in 'just a couple of years,' states CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in current research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for curiosity by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost outweigh benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, methods (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that human beings will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The remarkable Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk posed however expert system can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says huge tech is lying about AI termination risk". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect capacity of large language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees could see their tasks impacted by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal basic earnings due to the fact that 'in the future, manual labor will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer system programs that can fix issues and achieve goals in the world along with humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system easy adequate to be easy to understand will not be made complex enough to act wisely, while any system complicated enough to behave smartly will be too made complex to understand." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple foolish. They work, but they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from makers. For biological creatures, factor and purpose originate from acting in the world and experiencing the repercussions. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who wish to get rich from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't rely on federal governments driven by campaign financing contributions [from tech companies] to press back.' ... Marcus information the needs that people need to make from their federal governments and the tech business. They include transparency on how AI systems work; settlement for individuals if their data [are] used to train LLMs (big language model) s and the right to consent to this use; and the ability to hold tech business responsible for the damages they trigger by eliminating Section 230, enforcing cash penalites, and passing more stringent item liability laws ... Marcus also suggests ... that a brand-new, AI-specific federal agency, similar to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... establish [ing] an expert licensing routine for engineers that would work in a similar way to medical licenses, malpractice suits, and the Hippocratic oath in medication. 'What if, like medical professionals,' she asks ..., 'AI engineers also pledged to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually baffled humans for years, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has revealed that although NLP (natural-language processing) models are capable of unbelievable accomplishments, their abilities are very much restricted by the quantity of context they receive. This [...] could cause [problems] for scientists who want to use them to do things such as evaluate ancient languages. Sometimes, there are few historical records on long-gone civilizations to serve as training data for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce phony videos equivalent from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate realistic videos produced utilizing expert system that in fact deceive individuals, then they barely exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited evidence. Their function much better looks like that of cartoons, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning designs utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic basic intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead police to disregard inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to reason rationally and attempted to rely on its vast database of ... truths stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however undependable. Rules-based systems can not handle circumstances their developers did not prepare for. Learning systems are limited by the data on which they were trained. AI failures have actually currently led to catastrophe. Advanced autopilot functions in cars, although they perform well in some circumstances, have driven cars without warning into trucks, concrete barriers, and parked vehicles. In the incorrect circumstance, AI systems go from supersmart to superdumb in an instant. When an enemy is trying to manipulate and hack an AI system, the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations however depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.