DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion parameters to build, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled versions of the designs also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes support discovering to enhance reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial distinguishing feature is its reinforcement knowing (RL) step, which was utilized to improve the model's reactions beyond the and tweak process. By including RL, DeepSeek-R1 can adapt more efficiently to user feedback and objectives, eventually boosting both significance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, indicating it's geared up to break down complicated queries and factor through them in a detailed way. This directed thinking process enables the model to produce more precise, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT abilities, aiming to generate structured reactions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has captured the industry's attention as a versatile text-generation model that can be integrated into numerous workflows such as representatives, logical reasoning and data analysis tasks.
DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion specifications, enabling efficient reasoning by routing queries to the most pertinent professional "clusters." This technique permits the design to focus on different problem domains while maintaining overall effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more efficient models to simulate the behavior and thinking patterns of the larger DeepSeek-R1 model, using it as a teacher model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this model with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent hazardous material, and wiki.eqoarevival.com examine models against essential safety criteria. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop several guardrails tailored to different usage cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you require access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limit increase, develop a limit boost demand and reach out to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For instructions, see Establish consents to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, prevent harmful content, and assess models against key safety requirements. You can implement precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to assess user inputs and model responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The general flow involves the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After receiving the model's output, wiki.whenparked.com another guardrail check is used. If the output passes this last check, it's returned as the last outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections show inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane.
At the time of writing this post, you can utilize the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and pick the DeepSeek-R1 model.
The design detail page offers important details about the model's abilities, rates structure, and execution standards. You can find detailed usage instructions, consisting of sample API calls and code snippets for combination. The design supports different text generation jobs, consisting of content creation, code generation, and question answering, using its reinforcement learning optimization and CoT thinking abilities.
The page also includes deployment alternatives and licensing details to assist you begin with DeepSeek-R1 in your applications.
3. To start using DeepSeek-R1, choose Deploy.
You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of circumstances, enter a variety of instances (in between 1-100).
6. For Instance type, choose your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure innovative security and facilities settings, including virtual private cloud (VPC) networking, service role permissions, and file encryption settings. For many utilize cases, the default settings will work well. However, for production implementations, you may desire to evaluate these settings to line up with your organization's security and compliance requirements.
7. Choose Deploy to begin utilizing the design.
When the implementation is total, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in play area to access an interactive user interface where you can try out various prompts and adjust design parameters like temperature level and optimum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimal outcomes. For example, material for inference.
This is an exceptional way to explore the model's thinking and text generation abilities before incorporating it into your applications. The play ground provides instant feedback, helping you understand how the model reacts to different inputs and letting you fine-tune your prompts for ideal results.
You can rapidly evaluate the design in the play area through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning using guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to carry out reasoning using a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, configures reasoning criteria, and sends a demand to create text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML services that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 hassle-free methods: utilizing the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both approaches to assist you pick the approach that best fits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be prompted to produce a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The model browser displays available models, with details like the provider name and model abilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each model card shows key details, including:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if appropriate), indicating that this model can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the model
5. Choose the model card to see the model details page.
The design details page consists of the following details:
- The model name and provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details
The About tab consists of crucial details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you deploy the model, it's advised to evaluate the model details and license terms to verify compatibility with your use case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, use the immediately created name or produce a customized one.
- For example type ¸ pick an instance type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, enter the number of instances (default: 1). Selecting suitable circumstances types and counts is essential for expense and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
- Review all configurations for precision. For this design, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
- Choose Deploy to deploy the model.
The implementation process can take numerous minutes to complete.
When deployment is complete, your endpoint status will alter to InService. At this moment, the model is ready to accept inference requests through the endpoint. You can keep track of the deployment development on the SageMaker console Endpoints page, which will display appropriate metrics and status details. When the release is total, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that demonstrates how to deploy and use DeepSeek-R1 for inference programmatically. The code for releasing the model is offered in the Github here. You can clone the note pad and run from SageMaker Studio.
You can run extra requests against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Tidy up
To prevent unwanted charges, finish the actions in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the design utilizing Amazon Bedrock Marketplace, total the following steps:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace deployments. - In the Managed releases section, locate the endpoint you desire to delete.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're erasing the correct implementation: 1. Endpoint name.
- Model name.
-
Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business build ingenious options utilizing AWS services and sped up compute. Currently, he is focused on developing techniques for fine-tuning and enhancing the inference performance of large language designs. In his downtime, Vivek delights in hiking, watching movies, and attempting various cuisines.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about developing services that assist clients accelerate their AI journey and unlock business worth.